Лемма о перестановке интеграла и супремума: различия между версиями
Polina (обсуждение | вклад) |
Polina (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
− | Условия перестановки интеграла и супремума складываются в лемму, которая возникает в [https://sawiki.cs.msu.ru//index.php/%D0%97%D0%B0%D0%B4%D0%B0%D1%87%D0%B0_%D0%B1%D1%8B%D1%81%D1%82%D1%80%D0%BE%D0%B4%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D1%8F задаче быстродействия] (т.е. поиска управления, оптимального по времени) и применяется для облегчения расчета [https:// | + | Условия перестановки интеграла и супремума складываются в лемму, которая возникает в [https://sawiki.cs.msu.ru//index.php/%D0%97%D0%B0%D0%B4%D0%B0%D1%87%D0%B0_%D0%B1%D1%8B%D1%81%D1%82%D1%80%D0%BE%D0%B4%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D1%8F задаче быстродействия] (т.е. поиска управления, оптимального по времени) и применяется для облегчения расчета [https://sawiki.cs.msu.ru/index.php/%D0%9E%D0%BF%D0%BE%D1%80%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_%D0%BC%D0%BD%D0%BE%D0%B6%D0%B5%D1%81%D1%82%D0%B2%D0%B0 опорной функции] множества достижимости. |
== Задача быстродействия == | == Задача быстродействия == | ||
Строка 50: | Строка 50: | ||
== Формулировка леммы о перестановке интеграла и супремума == | == Формулировка леммы о перестановке интеграла и супремума == | ||
− | + | Пусть рассматривается задача быстродействия (\ref(main_sys)). Тогда справедливо тождество: | |
+ | \[\sup\limits_{u(\cdot)}\left[ \int\limits^{t_1}_{t_0} \langle s(\tau),\,u(\tau) \rangle d\tau\right] = \int\limits^{t_1}_{t_0}\left[\sup\limits_{u \in \mathcal{P}} \langle s(\tau),\,u \rangle\right] d\tau\] | ||
Версия 11:12, 29 ноября 2021
Условия перестановки интеграла и супремума складываются в лемму, которая возникает в задаче быстродействия (т.е. поиска управления, оптимального по времени) и применяется для облегчения расчета опорной функции множества достижимости.
Задача быстродействия
Тип задач оптимального управления, заключающегося в переводе системы из начального фиксированного положения в конечное, также фиксированное, за минимальное время.
Пусть наша система описывается следующими условиями:
\[ \left\{\begin{aligned} & \dot{x} = A(t)x(t) + B(t)u(t)+f(t), \\ & x(t_0) = x^0, \\ & x(t_1) = x^1, \\ & u(\tau) \in \mathcal{P} \in \textit{conv}R^m, \\ & t_1 - t_0 \longrightarrow \text{inf}, \end{aligned}\right. \label{main_sys} \]
где $$ x^0,\,x^1,\,t_0 $$ - фиксированы, $$ A(t),\,B(t),\,f(t) $$ - непрерывны, а $$ \mathcal{P} $$ непрерывно, как многозначное отображение (это требование гарантирует нам непрерывность опорной функции $$ \mathcal{\rho(l|\mathcal{P}(\tau))} $$ по $$ \tau $$ для любого $$ l $$).
Множество достижимости
Введем множество достижимости $$ \mathcal{X}[t_1] $$:
\[ \mathcal{X}[t_1] = \mathcal{X}(t_1,t_0,x^0) = \{x = x(t_1,t_0,x^0\,|\,u(\cdot)), u(\tau) \in \mathcal{P}\}. \]
Обозначение $$ \mathcal{X}[t_1] $$ означает, что в данный момент нам интересна зависимость $$ \mathcal{X} $$ только от переменной $$ t_1 $$, хотя в общем случае значение $$ \mathcal{X} $$ зависит от большего числа переменных.
Введем также трубку достижимости (функцию, отображающую время на соответствующее множество достижимости) как $$ \mathcal{X}[\cdot] $$. Ее графиком будем называть множество:
\[ \mathcal{X}[\cdot] = \{(t,\,x): x\in \mathcal{X}[t]\}. \]
Тогда опорная функция множества достижимости будет рассчитываться по следующей формуле:
\[ \rho(l\,|\,\mathcal{X}[t_1]) = \sup\limits_{u(\cdot)} \left[ \langle l,\,X(t_1,t_0) \rangle + \int\limits^{t_1}_{t_0}\langle B^T(\tau)X^T(t_1,\tau)l,\,u(\tau) \rangle d\tau + \int\limits^{t_1}_{t_0}\langle l,\,X(t_1,\tau)f(\tau) \rangle d\tau \right] = \] \[ = \langle l,\,X(t_1,t_0) \rangle + \int\limits^{t_1}_{t_0}\langle l,\,X(t_1,\tau)f(\tau) \rangle d\tau + \sup\limits_{u(\cdot)} \left[ \int\limits^{t_1}_{t_0}\langle B^T(\tau)X^T(t_1,\tau)l,\,u(\tau) \rangle d\tau \right]. \]
Теперь, у нас все готово для рассмотрения основной леммы.
Формулировка леммы о перестановке интеграла и супремума
Пусть рассматривается задача быстродействия (\ref(main_sys)). Тогда справедливо тождество: \[\sup\limits_{u(\cdot)}\left[ \int\limits^{t_1}_{t_0} \langle s(\tau),\,u(\tau) \rangle d\tau\right] = \int\limits^{t_1}_{t_0}\left[\sup\limits_{u \in \mathcal{P}} \langle s(\tau),\,u \rangle\right] d\tau\]
Переменная $$x$$
Жирный шрифт
- таки перечисление 1,
- таки перечисление 2.