Выпуклая функция и ее свойства: различия между версиями
Anita22 (обсуждение | вклад) |
Anita22 (обсуждение | вклад) |
||
Строка 17: | Строка 17: | ||
3. Функция $$f$$ называется '''собственной''', если $$\operatorname{dom} f \not= \varnothing$$ и $$f(x) > -\infty$$ для $$\forall x$$. Функция, не являющаяся собственной, называется '''несобственной'''. | 3. Функция $$f$$ называется '''собственной''', если $$\operatorname{dom} f \not= \varnothing$$ и $$f(x) > -\infty$$ для $$\forall x$$. Функция, не являющаяся собственной, называется '''несобственной'''. | ||
+ | == Свойства выпуклой функции == | ||
+ | |||
+ | === Необходимое и достаточное условие выпуклости === | ||
Собственная функция $$f$$ является выпуклой $$\Leftrightarrow $$ для $$\forall \alpha \in [0,1]$$, $$\forall x_1, x_2$$ выполняется: | Собственная функция $$f$$ является выпуклой $$\Leftrightarrow $$ для $$\forall \alpha \in [0,1]$$, $$\forall x_1, x_2$$ выполняется: | ||
− | \begin{gather | + | \begin{gather}\label{eq1} |
f(\alpha x_1 + (1-\alpha)x_2) \leqslant \alpha f(x_1) + (1-\alpha)f(x_2). | f(\alpha x_1 + (1-\alpha)x_2) \leqslant \alpha f(x_1) + (1-\alpha)f(x_2). | ||
− | \end{gather | + | \end{gather} |
− | По индукции получаем, что $$\{eq1}$$, а значит, и выпуклость собственной функции $$f$$, равносильны тому, что для $$\forall n \in \N$$ имеет место: | + | По индукции получаем, что $$\eqref{eq1}$$, а значит, и выпуклость собственной функции $$f$$, равносильны тому, что для $$\forall n \in \N$$ имеет место '''неравенство Йенсена''': |
− | \begin{gather | + | \begin{gather}\label{eq2} |
− | f\Big(\sum_{i=1}^n\alpha_i x_i\Big) \leqslant \sum_{i=1}^n\alpha_i f(x_i) \ | + | f\Big(\sum_{i=1}^n\alpha_i x_i\Big) \leqslant \sum_{i=1}^n\alpha_i f(x_i) \; |
\forall (\alpha_1,..., \alpha_n): \: | \forall (\alpha_1,..., \alpha_n): \: | ||
\sum_{i=1}^n\alpha_i = 1, \: | \sum_{i=1}^n\alpha_i = 1, \: | ||
\alpha_i \leqslant 0, | \alpha_i \leqslant 0, | ||
− | \end{gather | + | \end{gather} |
для любых точек $$x_1, ..., x_n$$. | для любых точек $$x_1, ..., x_n$$. | ||
+ | |||
+ | Если функция (не обязательно собственная) выпукла, то $$\eqref{eq2}$$ выполняется для любого набора точек $$x_1,...,x_n$$, для которых $$-\infty < f(x_i) < +\infty$$, $$i = \overline{1, n}$$. | ||
+ | |||
+ | Из $$\eqref{eq2}$$ вытекает, что эффективное множество выпуклой функции выпукло. | ||
== Список литературы == | == Список литературы == | ||
1. Арутюнов А. В. "Лекции по выпуклому и многозначному анализу", М.: ФИЗМАТЛИТ, 2004. | 1. Арутюнов А. В. "Лекции по выпуклому и многозначному анализу", М.: ФИЗМАТЛИТ, 2004. |
Версия 21:13, 4 сентября 2023
Выпуклая функция - функция $$f: X \to \overline{\R}$$, действующая из вещественного линейного пространства $$X \in \overline{\mathbb{R}}$$ в вещественную расширенную прямую $$\overline{\R} = \{ -\infty\} \cup \R \cup \{ +\infty\}$$, надграфик которой является выпуклым множеством.
Содержание
Определение выпуклой, собственной функции
1. Пусть $$\overline{\R} = \{ -\infty\} \cup \R \cup \{ +\infty\}$$ - расширенная вещественная прямая, $$X \in \overline{\mathbb{R}}$$ - вещественное линейное пространство. С каждой функцией $$f: X \to \overline{\R}$$ можно связать множества \begin{gather*} \operatorname{epi} f \equiv \bigl\{(x,\alpha) \in X \times \overline{\R} \mid f(x) \leqslant \alpha\bigr\},\\ \operatorname{dom} f \equiv \bigl\{x \in X \mid f(x) \leqslant +\infty\bigr\}, \end{gather*} называемые соответственно надграфиком функции $$f$$ и её эффективным множеством.
2. Функция $$f$$ называется выпуклой, если ее надграфик $$\operatorname{epi} f$$ является выпуклым множеством. Функция $$f$$ называется вогнутой, если функция $$(−f)$$ является выпуклой.
3. Функция $$f$$ называется собственной, если $$\operatorname{dom} f \not= \varnothing$$ и $$f(x) > -\infty$$ для $$\forall x$$. Функция, не являющаяся собственной, называется несобственной.
Свойства выпуклой функции
Необходимое и достаточное условие выпуклости
Собственная функция $$f$$ является выпуклой $$\Leftrightarrow $$ для $$\forall \alpha \in [0,1]$$, $$\forall x_1, x_2$$ выполняется: \begin{gather}\label{eq1} f(\alpha x_1 + (1-\alpha)x_2) \leqslant \alpha f(x_1) + (1-\alpha)f(x_2). \end{gather}
По индукции получаем, что $$\eqref{eq1}$$, а значит, и выпуклость собственной функции $$f$$, равносильны тому, что для $$\forall n \in \N$$ имеет место неравенство Йенсена: \begin{gather}\label{eq2} f\Big(\sum_{i=1}^n\alpha_i x_i\Big) \leqslant \sum_{i=1}^n\alpha_i f(x_i) \; \forall (\alpha_1,..., \alpha_n): \: \sum_{i=1}^n\alpha_i = 1, \: \alpha_i \leqslant 0, \end{gather} для любых точек $$x_1, ..., x_n$$.
Если функция (не обязательно собственная) выпукла, то $$\eqref{eq2}$$ выполняется для любого набора точек $$x_1,...,x_n$$, для которых $$-\infty < f(x_i) < +\infty$$, $$i = \overline{1, n}$$.
Из $$\eqref{eq2}$$ вытекает, что эффективное множество выпуклой функции выпукло.
Список литературы
1. Арутюнов А. В. "Лекции по выпуклому и многозначному анализу", М.: ФИЗМАТЛИТ, 2004.