Выпуклая функция и ее свойства: различия между версиями

Материал из sawiki
Перейти к навигации Перейти к поиску
Строка 17: Строка 17:
 
3. Функция $$f$$ называется '''собственной''', если $$\operatorname{dom} f \not= \varnothing$$ и $$f(x) > -\infty$$ для $$\forall x$$. Функция, не являющаяся собственной, называется '''несобственной'''.
 
3. Функция $$f$$ называется '''собственной''', если $$\operatorname{dom} f \not= \varnothing$$ и $$f(x) > -\infty$$ для $$\forall x$$. Функция, не являющаяся собственной, называется '''несобственной'''.
  
== Свойства выпуклой функции ==
+
== Критерии выпуклости функции ==
  
=== Необходимое и достаточное условие выпуклости ===
+
=== Неравенство Йенсена ===
Собственная функция $$f$$ является выпуклой $$\Leftrightarrow $$ для $$\forall \alpha \in [0,1]$$, $$\forall x_1, x_2$$ выполняется:
+
'''Необходимое и достаточное условие выпуклости '''. Собственная функция $$f$$ является выпуклой $$\Leftrightarrow $$ для $$\forall \alpha \in [0,1]$$, $$\forall x_1, x_2$$ выполняется:
 
\begin{gather}\label{eq1}
 
\begin{gather}\label{eq1}
 
f(\alpha x_1 + (1-\alpha)x_2) \leqslant \alpha f(x_1) + (1-\alpha)f(x_2).
 
f(\alpha x_1 + (1-\alpha)x_2) \leqslant \alpha f(x_1) + (1-\alpha)f(x_2).
Строка 46: Строка 46:
  
 
\begin{gather}
 
\begin{gather}
\sum_{k=1}^{n+1}\alpha_k f(x_k) = s_n \sum_{k=1}^{n}\beta_k f(x_k) + \alpha_{n+1}f(x_n+1) \leqslant \text{(по предположению индукции)}\leqslant \\
+
\sum_{k=1}^{n+1}\alpha_k f(x_k) = s_n \sum_{k=1}^{n}\beta_k f(x_k) + \alpha_{n+1}f(x_{n+1}) \leqslant \text{(по предположению индукции)}\leqslant \\
 
\leqslant  s_n f \left( \sum_{k=1}^{n}\beta_k x_k  \right) + \alpha_{n+1}f(x_{n+1}) \leqslant \text{(так как } s_n + \alpha_{n+1} ) \leqslant f \left( \sum_{k=1}^{n+1}\alpha_k x_k  \right)
 
\leqslant  s_n f \left( \sum_{k=1}^{n}\beta_k x_k  \right) + \alpha_{n+1}f(x_{n+1}) \leqslant \text{(так как } s_n + \alpha_{n+1} ) \leqslant f \left( \sum_{k=1}^{n+1}\alpha_k x_k  \right)
 
\end{gather}
 
\end{gather}
 
$$\blacksquare$$
 
$$\blacksquare$$
 +
 +
'''Следствие'''. Из $$\eqref{eq2}$$ вытекает, что эффективное множество выпуклой функции выпукло.
 +
  
 
'''Лемма'''. Пусть $$X$$  - нормированное пространство, функция $$f: X \to \R$$, непрерывна и  
 
'''Лемма'''. Пусть $$X$$  - нормированное пространство, функция $$f: X \to \R$$, непрерывна и  
Строка 91: Строка 94:
 
\end{gather}
 
\end{gather}
 
$$\blacksquare$$
 
$$\blacksquare$$
 +
 +
Если функция (не обязательно собственная) выпукла, то $$\eqref{eq2}$$ выполняется для любого набора точек $$x_1,...,x_n$$, для которых $$-\infty < f(x_i) < +\infty$$, $$i = \overline{1, n}$$.
  
  
Если функция (не обязательно собственная) выпукла, то $$\eqref{eq2}$$ выполняется для любого набора точек $$x_1,...,x_n$$, для которых $$-\infty < f(x_i) < +\infty$$, $$i = \overline{1, n}$$.
 
  
Из $$\eqref{eq2}$$ вытекает, что эффективное множество выпуклой функции выпукло.
 
  
 
Если функции $$f$$, $$g$$ выпуклы, то любая их линейная комбинация $$af+bg$$ с положительными коэффициентами $$a, b \in \R$$ также выпукла.
 
Если функции $$f$$, $$g$$ выпуклы, то любая их линейная комбинация $$af+bg$$ с положительными коэффициентами $$a, b \in \R$$ также выпукла.
Строка 104: Строка 107:
  
 
=== Теорема (критерий выпуклости) ===
 
=== Теорема (критерий выпуклости) ===
Пусть $$X$$ - евклидово пространство и функция $$f$$ дважды непрерывно дифференцируема на $$X$$. Тогда функция $$f$$ выпукла $$\Leftrightarrow $$ для $$\forall x \in X$$ выполняется:
+
''Аффинной оболочкой множества'' $$A \subset X$$ ($$\operatorname{aff} A$$) называется множество всевозможных аффинных комбинаций точек из $$A$$, то есть
 +
\begin{gather}
 +
\operatorname{aff} A = \left\{ x: x = \sum_{i = 1}^n \alpha_i x_i \mid n \in \N, \; \sum_{i=1}^n \alpha_i = 1, \; x_i \in A \right\}.
 +
\end{gather}
 +
 
 +
Пусть $$X$$ - нормированное пространство, и $$A \subset X$$.
 +
''Относительной внутренностью выпуклого множества'' $$A$$ ($$\operatorname{ri} A$$) называется внутренность $$A$$ относительно $$\operatorname{aff} A$$. А именно, точка $$x_0 \in \operatorname{ri} A$$, если $$\exists ε > 0$$ такое, что
 +
\begin{gather}
 +
O(x_0, ε) \cap \operatorname{aff A} \subset A.
 +
\end{gather}
 +
 
 +
'''Теорема'''. Пусть множество $$A \subset \R^n$$ выпукло. Тогда его относительная внутрость $$\operatorname{ri} A$$ непуста.
 +
 
 +
'''Лемма 1'''. Пусть выпуклая функция $$f$$ не является собственной. Тогда
 +
\begin{gather}
 +
f(x) = - \infty \; \forall x \in \operatorname{ri}(\operatorname{dom}f).
 +
\end{gather}
 +
Иными словами, несобственная выпуклая функция бесконечна во всех точках, кроме, быть может, точек относительной границы своего эффективного множества.
 +
 
 +
'''Лемма 2'''. Пусть $$f$$ - выпуклая функция и $$X \in \R^n$$. Тогда $$a \in \R^n$$, ,$$b \in \R$$ что:
 +
\begin{gather}
 +
f(x) \geqslant \langle a, x\rangle+b \; \forall x \in X.
 +
\end{gather}
 +
 
 +
'''Критерий выпуклости'''. Пусть $$X$$ - евклидово пространство и функция $$f$$ дважды непрерывно дифференцируема на $$X$$. Тогда функция $$f$$ выпукла $$\Leftrightarrow $$ для $$\forall x \in X$$ выполняется:
 
\begin{gather}\label{eq3}
 
\begin{gather}\label{eq3}
 
\dfrac{\partial^2 f(x)}{\partial x^2} \geqslant 0 \;  
 
\dfrac{\partial^2 f(x)}{\partial x^2} \geqslant 0 \;  
 
\end{gather}
 
\end{gather}
 
Здесь неотрицательность квадратичной формы $$Q = \frac{\partial^2 f(x)}{\partial x^2}$$ означает, что $$\langle Qξ, ξ\rangle \geqslant 0 \forall ξ \in X $$.
 
Здесь неотрицательность квадратичной формы $$Q = \frac{\partial^2 f(x)}{\partial x^2}$$ означает, что $$\langle Qξ, ξ\rangle \geqslant 0 \forall ξ \in X $$.
 +
 +
''Доказательство. Необходимость''. Обозначим $$ \dfrac{\partial^2 f(x)}{\partial x^2} = f''(x)$$. Предположим, функци $$f$$ выпукла. Фиксируем произвольные $$x, y \in X$$. В силу определения выпуклости $$\forall \lambda \in [0, 1]$$ 
 +
\begin{gather}
 +
f(\lambda x + (1-\lambda)y) \leqslant \lambda f(x) + (1 - \lambda)f(y),
 +
\end{gather}
 +
откуда
 +
\begin{gather}\label{eq4}
 +
  \lambda f(x) \geqslant \lambda f(y) + [f(y + \lambda(x-y)) - f(y)].
 +
\end{gather}
 +
Для каждого фиксированного $$\lambda \in [0, 1]$$  определим скалярную функцию $$φ_{\lambda} : [0, 1] \to \R$$ по формуле $$φ_{\lambda}(θ) = f(y + θλ(x-y))$$. По формуле конечных приращений Лагранжа $$\forall \lambda \in [0, 1]$$ $$\exists θ_λ \in [0,1]$$, такое, что $$φ_{\lambda}(1) - φ_{\lambda}(0) = φ_{\lambda}'(θ_λ)$$. Поэтому, вычисляя производную $$φ_{\lambda}$$ как производную сложной функции, получаем
 +
\begin{gather}
 +
f(y + λ(x-y)) - f(y) = \langle f'(y + θ_λλ(x-y)), λ(x-y)\rangle.
 +
\end{gather}
 +
Подставляя это выражение в неравенство $$\eqref{eq4}$$, получаем $$\forall \in [0, 1]$$ $$\exists θ_λ \in [0,1]$$:
 +
\begin{gather}
 +
λf(x) \geqslant λf(y) + \langle f'(y + θ_λλ(x-y)), λ(x-y)\rangle.
 +
\end{gather}
 +
Делим обечасти неравенства на $$λ > 0$$, при $$\lambda \to 0+$$ имеем
 +
\begin{gather}
 +
f(x) \geqslant f(y) + \langle f'(y), x-y\rangle.
 +
\end{gather}
 +
Меняем $$x$$ и $$y$$ местами, получаем
 +
\begin{gather}
 +
f(y) \geqslant f(x) + \langle f'(x), y-x\rangle.
 +
\end{gather}
 +
Складываем получаенные неравенства.
 +
\begin{gather}
 +
\langle f'(y) - f'(x), y-x\rangle \geqslant 0 \; \forall x, y.
 +
\end{gather}
 +
Пусть $$y=x+\epsilon h$$ и $$\epsilon > 0$$. Повторяя рассуждения, основанные на применении [https://ru.wikipedia.org/wiki/%D0%A4%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0_%D0%BA%D0%BE%D0%BD%D0%B5%D1%87%D0%BD%D1%8B%D1%85_%D0%BF%D1%80%D0%B8%D1%80%D0%B0%D1%89%D0%B5%D0%BD%D0%B8%D0%B9 формулы конечных приращений Лагранжа], получаем, что для $$\forall \epsilon > 0$$ $$\exists \overline{θ_ε} \in [0,1]$$ такое, что
 +
\begin{gather}
 +
\langle f''(x + εh)εh, εh\rangle \geqslant 0.
 +
\end{gather}
 +
Делим обе части этого равенства на $$ε^2 > 0$$ при $$ε \to 0+$$ получаем $$\langle f''(x)h, h\rangle \geqslant 0$$ $$\forall h \in X$$, что и доказывает $$\eqref{eq3}$$,
  
 
''Замечание''. Обратное неверно. Например, функция $$f(x)=x^4$$ строго выпукла на $$[-1,1]$$, но её производная в точке $$x=0$$ равна нулю.  
 
''Замечание''. Обратное неверно. Например, функция $$f(x)=x^4$$ строго выпукла на $$[-1,1]$$, но её производная в точке $$x=0$$ равна нулю.  

Версия 18:57, 7 сентября 2023

Пример выпуклого множества.

Выпуклая (или выпуклая вниз) функция - функция $$f: X \to \overline{\R}$$, действующая из вещественного линейного пространства $$X \in \overline{\mathbb{R}}$$ в вещественную расширенную прямую $$\overline{\R} = \{ -\infty\} \cup \R \cup \{ +\infty\}$$, надграфик которой является выпуклым множеством.

Определение выпуклой, собственной функции

1. Пусть $$\overline{\R} = \{ -\infty\} \cup \R \cup \{ +\infty\}$$ - расширенная вещественная прямая, $$X \in \overline{\mathbb{R}}$$ - вещественное линейное пространство. С каждой функцией $$f: X \to \overline{\R}$$ можно связать множества \begin{gather*} \operatorname{epi} f \equiv \bigl\{(x,\alpha) \in X \times \overline{\R} \mid f(x) \leqslant \alpha\bigr\},\\ \operatorname{dom} f \equiv \bigl\{x \in X \mid f(x) \leqslant +\infty\bigr\}, \end{gather*} называемые соответственно надграфиком функции $$f$$ и её эффективным множеством.

2. Функция $$f$$ называется выпуклой (строго выпуклой), если ее надграфик $$\operatorname{epi} f$$ является (строго выпуклым), выпуклым множеством. Функция $$f$$ называется вогнутой или выпуклой вверх (строго вогнутой), если функция $$(−f)$$ является выпуклой (строго выпуклой).

3. Функция $$f$$ называется собственной, если $$\operatorname{dom} f \not= \varnothing$$ и $$f(x) > -\infty$$ для $$\forall x$$. Функция, не являющаяся собственной, называется несобственной.

Критерии выпуклости функции

Неравенство Йенсена

Необходимое и достаточное условие выпуклости . Собственная функция $$f$$ является выпуклой $$\Leftrightarrow $$ для $$\forall \alpha \in [0,1]$$, $$\forall x_1, x_2$$ выполняется: \begin{gather}\label{eq1} f(\alpha x_1 + (1-\alpha)x_2) \leqslant \alpha f(x_1) + (1-\alpha)f(x_2). \end{gather} Если это неравенство является строгим для $$\forall \alpha \in [0,1]$$, функция строго выпуклая; если выполняется обратное неравенство, функция вогнутая.

Теорема (неравенство Йенсена). Равенство $$\eqref{eq1}$$, а значит, и выпуклость собственной функции $$f$$, равносильны тому, что для $$\forall n \in \N$$ имеет место неравенство: \begin{gather}\label{eq2} f\Big(\sum_{i=1}^n\alpha_i x_i\Big) \leqslant \sum_{i=1}^n\alpha_i f(x_i) \; \forall (\alpha_1,..., \alpha_n): \: \sum_{i=1}^n\alpha_i = 1, \: \alpha_i \leqslant 0, \end{gather} для любых точек $$x_1, ..., x_n$$.

Доказательство. Докажем по индукции.

1. База при $$n = 2$$ верна в силу $$\eqref{eq1}$$.

2. Пусть это верно для $$n$$. Докажем, что это верно для $$n + 1$$.

По условию $$\sum_{k=1}^{n+1}\alpha_k = 1$$. Обозначим $$s_n =\sum_{k=1}^{n}\alpha_k$$.

$$\beta_k = \alpha_k/s_n$$. Тогда $$\sum_{k=1}^{n}\beta_k = \dfrac{1}{s_n}\sum_{k=1}^{n}\alpha_k = \dfrac{s_n}{s_n} = 1$$.

\begin{gather} \sum_{k=1}^{n+1}\alpha_k f(x_k) = s_n \sum_{k=1}^{n}\beta_k f(x_k) + \alpha_{n+1}f(x_{n+1}) \leqslant \text{(по предположению индукции)}\leqslant \\ \leqslant s_n f \left( \sum_{k=1}^{n}\beta_k x_k \right) + \alpha_{n+1}f(x_{n+1}) \leqslant \text{(так как } s_n + \alpha_{n+1} ) \leqslant f \left( \sum_{k=1}^{n+1}\alpha_k x_k \right) \end{gather} $$\blacksquare$$

Следствие. Из $$\eqref{eq2}$$ вытекает, что эффективное множество выпуклой функции выпукло.


Лемма. Пусть $$X$$ - нормированное пространство, функция $$f: X \to \R$$, непрерывна и \begin{gather} f \left( \dfrac{x+y}{2} \right) \leqslant \frac{f \left( x \right) + f \left( y \right)}{2} \forall x, y \in X, \end{gather} т. е. неравенство Йенсена выполняется лишь при $$\alpha = 1/2$$. Тогда функция $$f$$ выпукла.

Доказательство. Докажем по индукции, что для $$\forall \alpha = \dfrac{m}{2^k}\in (0,1)$$ выполняется неравенство Йенсена $$f(\alpha x + (1- \alpha)y) \leqslant \alpha f(x) + (1-\alpha) f(y)$$.

1. Подставим $$\alpha_1 = 3/4$$ и $$\alpha_2 = 1/4$$ в неравенство Йенсена $$\eqref{eq2}$$. \begin{gather} f \left( \dfrac{3}{4}x + \dfrac{1}{4}y \right) \leqslant \dfrac{1}{2}\left( f(x) + f \left( \dfrac{x+y}{2} \right)\right) \leqslant \dfrac{3}{4} f(x) + \dfrac{1}{4} f(y). \end{gather} Аналогично выполняется для $$\alpha_1 = 1/4$$ и $$\alpha_2 = 3/4$$: \begin{gather} f \left( \dfrac{1}{4}x + \dfrac{3}{4}y \right) \leqslant \dfrac{1}{4} f(x) + \dfrac{3}{4} f(y). \end{gather}

2. Пусть неравенство верно для $$\alpha_1, \alpha_2 \in (0,1)$$. Тогда \begin{gather} f \left( \dfrac{1}{2}( \alpha_1 x + (1 - \alpha_1)y + \alpha_2 x + (1 - \alpha_2)y)\right) \leqslant \dfrac{1}{2}\left( f(\alpha_1 x + (1 - \alpha_1)y) + f(\alpha_2 x + (1-\alpha_2)y \right) \leqslant \\ \leqslant \dfrac{\alpha_1 + \alpha_2}{2}f(x) + \dfrac{(1-\alpha_1) + (1-\alpha_2)}{2} f(y). \end{gather}

3. Докажем, что функция $$f$$ выпукла, т. е. неравенство Йенсена выполняетсядля произвольных $$\alpha, \beta \in [0, 1]$$, $$\alpha + \beta = 1$$. Выберем $$\{\alpha_n, \beta_n\}$$ вида $$\alpha_n = \dfrac{m}{2^k}$$ так, что $$\{\alpha_n, \beta_n\} \to \{\alpha, \beta\}$$ при $$n \to \infty$$. Из непрерывности $$f$$ $$f(\alpha_n x + \beta_n y) \to f(\alpha x + \beta y)$$ при $$n \to \infty$$.

В силу доказанного в п. 2 для $$\forall n$$: \begin{gather} f ( \alpha_n x + \beta_n y) \leqslant \alpha_n f(x) + \beta_n f(y). \end{gather}

В силу произвольности $$n$$ при $$n \to\infty$$ получаем \begin{gather} f ( \alpha x + \beta y) \leqslant \alpha f(x) + \beta f(y). \end{gather} $$\blacksquare$$

Если функция (не обязательно собственная) выпукла, то $$\eqref{eq2}$$ выполняется для любого набора точек $$x_1,...,x_n$$, для которых $$-\infty < f(x_i) < +\infty$$, $$i = \overline{1, n}$$.



Если функции $$f$$, $$g$$ выпуклы, то любая их линейная комбинация $$af+bg$$ с положительными коэффициентами $$a, b \in \R$$ также выпукла.

Локальный минимум выпуклой функции является также глобальным минимумом (соответственно, для выпуклых вверх функций локальный максимум является глобальным максимумом).

Далее считаем, что $$X$$ - нормированное пространство.

Теорема (критерий выпуклости)

Аффинной оболочкой множества $$A \subset X$$ ($$\operatorname{aff} A$$) называется множество всевозможных аффинных комбинаций точек из $$A$$, то есть \begin{gather} \operatorname{aff} A = \left\{ x: x = \sum_{i = 1}^n \alpha_i x_i \mid n \in \N, \; \sum_{i=1}^n \alpha_i = 1, \; x_i \in A \right\}. \end{gather}

Пусть $$X$$ - нормированное пространство, и $$A \subset X$$. Относительной внутренностью выпуклого множества $$A$$ ($$\operatorname{ri} A$$) называется внутренность $$A$$ относительно $$\operatorname{aff} A$$. А именно, точка $$x_0 \in \operatorname{ri} A$$, если $$\exists ε > 0$$ такое, что \begin{gather} O(x_0, ε) \cap \operatorname{aff A} \subset A. \end{gather}

Теорема. Пусть множество $$A \subset \R^n$$ выпукло. Тогда его относительная внутрость $$\operatorname{ri} A$$ непуста.

Лемма 1. Пусть выпуклая функция $$f$$ не является собственной. Тогда \begin{gather} f(x) = - \infty \; \forall x \in \operatorname{ri}(\operatorname{dom}f). \end{gather} Иными словами, несобственная выпуклая функция бесконечна во всех точках, кроме, быть может, точек относительной границы своего эффективного множества.

Лемма 2. Пусть $$f$$ - выпуклая функция и $$X \in \R^n$$. Тогда $$a \in \R^n$$, ,$$b \in \R$$ что: \begin{gather} f(x) \geqslant \langle a, x\rangle+b \; \forall x \in X. \end{gather}

Критерий выпуклости. Пусть $$X$$ - евклидово пространство и функция $$f$$ дважды непрерывно дифференцируема на $$X$$. Тогда функция $$f$$ выпукла $$\Leftrightarrow $$ для $$\forall x \in X$$ выполняется: \begin{gather}\label{eq3} \dfrac{\partial^2 f(x)}{\partial x^2} \geqslant 0 \; \end{gather} Здесь неотрицательность квадратичной формы $$Q = \frac{\partial^2 f(x)}{\partial x^2}$$ означает, что $$\langle Qξ, ξ\rangle \geqslant 0 \forall ξ \in X $$.

Доказательство. Необходимость. Обозначим $$ \dfrac{\partial^2 f(x)}{\partial x^2} = f''(x)$$. Предположим, функци $$f$$ выпукла. Фиксируем произвольные $$x, y \in X$$. В силу определения выпуклости $$\forall \lambda \in [0, 1]$$ \begin{gather} f(\lambda x + (1-\lambda)y) \leqslant \lambda f(x) + (1 - \lambda)f(y), \end{gather} откуда \begin{gather}\label{eq4} \lambda f(x) \geqslant \lambda f(y) + [f(y + \lambda(x-y)) - f(y)]. \end{gather} Для каждого фиксированного $$\lambda \in [0, 1]$$ определим скалярную функцию $$φ_{\lambda} : [0, 1] \to \R$$ по формуле $$φ_{\lambda}(θ) = f(y + θλ(x-y))$$. По формуле конечных приращений Лагранжа $$\forall \lambda \in [0, 1]$$ $$\exists θ_λ \in [0,1]$$, такое, что $$φ_{\lambda}(1) - φ_{\lambda}(0) = φ_{\lambda}'(θ_λ)$$. Поэтому, вычисляя производную $$φ_{\lambda}$$ как производную сложной функции, получаем \begin{gather} f(y + λ(x-y)) - f(y) = \langle f'(y + θ_λλ(x-y)), λ(x-y)\rangle. \end{gather} Подставляя это выражение в неравенство $$\eqref{eq4}$$, получаем $$\forall \in [0, 1]$$ $$\exists θ_λ \in [0,1]$$: \begin{gather} λf(x) \geqslant λf(y) + \langle f'(y + θ_λλ(x-y)), λ(x-y)\rangle. \end{gather} Делим обечасти неравенства на $$λ > 0$$, при $$\lambda \to 0+$$ имеем \begin{gather} f(x) \geqslant f(y) + \langle f'(y), x-y\rangle. \end{gather} Меняем $$x$$ и $$y$$ местами, получаем \begin{gather} f(y) \geqslant f(x) + \langle f'(x), y-x\rangle. \end{gather} Складываем получаенные неравенства. \begin{gather} \langle f'(y) - f'(x), y-x\rangle \geqslant 0 \; \forall x, y. \end{gather} Пусть $$y=x+\epsilon h$$ и $$\epsilon > 0$$. Повторяя рассуждения, основанные на применении формулы конечных приращений Лагранжа, получаем, что для $$\forall \epsilon > 0$$ $$\exists \overline{θ_ε} \in [0,1]$$ такое, что \begin{gather} \langle f''(x + εh)εh, εh\rangle \geqslant 0. \end{gather} Делим обе части этого равенства на $$ε^2 > 0$$ при $$ε \to 0+$$ получаем $$\langle f''(x)h, h\rangle \geqslant 0$$ $$\forall h \in X$$, что и доказывает $$\eqref{eq3}$$,

Замечание. Обратное неверно. Например, функция $$f(x)=x^4$$ строго выпукла на $$[-1,1]$$, но её производная в точке $$x=0$$ равна нулю.

Следствие. Если функция $$f$$ выпукла и дважды непрерывно дифференцируема в некоторой окрестности точки $$x_0 \in X$$, то \begin{gather} \dfrac{\partial^2 f}{\partial x^2}(x_0) \geqslant 0. \end{gather}

Замкнутость, ограниченность, непрерывность и липшицевость выпуклых функций

Будем считать, что $$X$$ - нормированное пространство. Функция $$f: X \to \overline{\R}$$ непрерывна в точке $$x_0 \in X$$, если для любой сходящейся к ней последовательности $$\bigl\{x_i\bigr\}$$ имеет место $$f(x_i) \rightarrow f(x_0)$$ при $$i \rightarrow \infty$$.

Определенная на $$X$$ функция $$f$$ называется полунепрерывной снизу в точке $$x_0$$, если $$\underline{\lim}_{x_i \rightarrow x_0} f(x_i) \geqslant f(x_0)$$. Функция $$f$$ называется полунепрерывной сверху в точке $$x_0$$, если функция $$-f$$ полунепрерывна снизу. Функция полунепрерывна снизу (сверху), если она полунепрерывна снизу (сверху) во всех точках.

Функция называется замкнутой, если её надграфик замкнут.

Утв 1. Пусть $$f$$ - выпуклая собственная функция и $$X = \overline{\R}^n$$. Тогда её замыкание $$\operatorname{cl} f$$ также является собственной функцией.

Необходимое и достаточное условие полунепрерывности снизу

Функция $$f$$ полунепрерывна снизу $$\Leftrightarrow$$, когда для $$\forall a \in \R$$ ее множество Лебега $$\mathcal{L}_a f$$ замкнуто.

Необходимое и достаточное условие замкнутости

Для замкнутости функции необходимо и достаточно, чтобы она была полунепрерывна снизу.

Полунепрерывность сверху

Пусть $$f: \R^n \to \overline{\R}$$ - выпуклая функция и $$M \subset \operatorname{dom} f$$ - симплектическое множество. Тогда сужение $$f$$ на $$M$$ полунепрерывно сверху. То есть, если последовательность $$$$ $$M$$ $$x_0$$, то верхний предел $$f(x_i)$$ не превышает $$f(x_0)$$.

Теорема о непрерывности в окрестности точки

Пусть выпуклая собственная функция $$f: X \to \overline{\R}$$ ограничена сверху в некоторой окрестности заданной точки $$x_0$$. Тогда $$f$$ непрерывна в этой окрестности точки $$x_0$$.

Следствие (липшицевость в окрестности). Пусть для выпуклой собственной функции $$f: X \to \overline{\R}$$ и точки $$x_0 \in X$$ $$\exists c > 0$$, $$\delta >0$$, что $$f(x) \leqslant c$$ $$\forall x \in O(x_0, 2\delta)$$. Тогда на множестве $$O(x_0, 2\delta)$$ функция $$f$$ удовлетворяет условию Липшица с константой $$c$$: окрестности точки $$x_0 \in X$$, то \begin{gather} \mid f(x_2) - f(x_1)\mid \leqslant c \mid \mid x_2 - x_1 \mid \mid \; \forall x_1, x_2 \in O(x_0, \delta). \end{gather}

Следствие. Пусть выпуклая собственная функция $$f: X \to \overline{\R}$$ ограничена сверху на некотором непустом открытом множестве. Тогда она непрерывна на множестве $$\operatorname{int}(\operatorname{dom f}) \not = \varnothing$$.

$$\text{int A} -$$ внутренность множества$$A -$$ множество всех внутренних точек множества $$A$$.

Теорема о липшицевости на выпуклом компакте

Пусть $$f: \R^n \to \overline{\R}$$ - собственная выпуклая функция, $$S$$ - выпуклый компакт и $$S \subset \operatorname{int}(\operatorname{dom f})$$. Тогда на множестве $$S$$ функция $$f$$ удовлетворяет условию Липшица.

Список литературы

1. Арутюнов А. В. "Лекции по выпуклому и многозначному анализу", М.: ФИЗМАТЛИТ, 2004. 2. Фих­тен­гольц Г. М. "Курс диф­фе­рен­ци­аль­но­го и ин­те­граль­но­го ис­чис­ле­ния." 8-е изд. М.; СПб., 2001; 3. Иль­ин В. А., По­зняк Э. Г. "Ос­но­вы ма­те­ма­ти­че­ско­го ана­ли­за." 6-е изд. М., 2001. Т. 1.