Лемма о перестановке интеграла и супремума: различия между версиями
Polina (обсуждение | вклад) |
Polina (обсуждение | вклад) |
||
Строка 51: | Строка 51: | ||
== Формулировка леммы о перестановке интеграла и супремума == | == Формулировка леммы о перестановке интеграла и супремума == | ||
Пусть рассматривается задача быстродействия (\ref(main_sys)). Тогда справедливо тождество: | Пусть рассматривается задача быстродействия (\ref(main_sys)). Тогда справедливо тождество: | ||
− | \[\sup\limits_{u(\cdot)}\left[ \int\limits^{t_1}_{t_0} \langle s(\tau),\,u(\tau) \rangle d\tau\right] = \int\limits^{t_1}_{t_0}\left[\sup\limits_{u \in \mathcal{P}} \langle s(\tau),\,u \rangle\right] d\tau\] | + | \[\sup\limits_{u(\cdot)}\left[ \int\limits^{t_1}_{t_0} \langle s(\tau),\,u(\tau) \rangle \,d\tau\right] = \int\limits^{t_1}_{t_0}\left[\sup\limits_{u \in \mathcal{P}} \langle s(\tau),\,u \rangle\right] d\tau,\] |
+ | где $$s(\tau) = B^T(\tau)X^T(t_1,\tau)l$$. | ||
+ | == Доказательство леммы == | ||
+ | \begin{proof} | ||
+ | Так как $$ s(\tau) $$~--- непрерывная функция, то $$ \rho(s(\tau)|\mathcal{P}(t)) = \sup\limits_{u \in \mathcal{P}(\tau)} \langle s(\tau),\,u \rangle $$ непрерывно по $$ \tau $$, и, следовательно, интегрируема. | ||
+ | Рассмотрим $$ \text{Argmax}\limits_{u(\cdot) \in \mathcal{P}(\tau)} $$ | ||
+ | \end{proof} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
[[Категория:ОУ]] | [[Категория:ОУ]] |
Версия 11:27, 29 ноября 2021
Условия перестановки интеграла и супремума складываются в лемму, которая возникает в задаче быстродействия (т.е. поиска управления, оптимального по времени) и применяется для облегчения расчета опорной функции множества достижимости.
Содержание
Задача быстродействия
Тип задач оптимального управления, заключающегося в переводе системы из начального фиксированного положения в конечное, также фиксированное, за минимальное время.
Пусть наша система описывается следующими условиями:
\[ \left\{\begin{aligned} & \dot{x} = A(t)x(t) + B(t)u(t)+f(t), \\ & x(t_0) = x^0, \\ & x(t_1) = x^1, \\ & u(\tau) \in \mathcal{P} \in \textit{conv}R^m, \\ & t_1 - t_0 \longrightarrow \text{inf}, \end{aligned}\right. \label{main_sys} \]
где $$ x^0,\,x^1,\,t_0 $$ - фиксированы, $$ A(t),\,B(t),\,f(t) $$ - непрерывны, а $$ \mathcal{P} $$ непрерывно, как многозначное отображение (это требование гарантирует нам непрерывность опорной функции $$ \mathcal{\rho(l|\mathcal{P}(\tau))} $$ по $$ \tau $$ для любого $$ l $$).
Множество достижимости
Введем множество достижимости $$ \mathcal{X}[t_1] $$:
\[ \mathcal{X}[t_1] = \mathcal{X}(t_1,t_0,x^0) = \{x = x(t_1,t_0,x^0\,|\,u(\cdot)), u(\tau) \in \mathcal{P}\}. \]
Обозначение $$ \mathcal{X}[t_1] $$ означает, что в данный момент нам интересна зависимость $$ \mathcal{X} $$ только от переменной $$ t_1 $$, хотя в общем случае значение $$ \mathcal{X} $$ зависит от большего числа переменных.
Введем также трубку достижимости (функцию, отображающую время на соответствующее множество достижимости) как $$ \mathcal{X}[\cdot] $$. Ее графиком будем называть множество:
\[ \mathcal{X}[\cdot] = \{(t,\,x): x\in \mathcal{X}[t]\}. \]
Тогда опорная функция множества достижимости будет рассчитываться по следующей формуле:
\[ \rho(l\,|\,\mathcal{X}[t_1]) = \sup\limits_{u(\cdot)} \left[ \langle l,\,X(t_1,t_0) \rangle + \int\limits^{t_1}_{t_0}\langle B^T(\tau)X^T(t_1,\tau)l,\,u(\tau) \rangle d\tau + \int\limits^{t_1}_{t_0}\langle l,\,X(t_1,\tau)f(\tau) \rangle d\tau \right] = \] \[ = \langle l,\,X(t_1,t_0) \rangle + \int\limits^{t_1}_{t_0}\langle l,\,X(t_1,\tau)f(\tau) \rangle d\tau + \sup\limits_{u(\cdot)} \left[ \int\limits^{t_1}_{t_0}\langle B^T(\tau)X^T(t_1,\tau)l,\,u(\tau) \rangle d\tau \right]. \]
Теперь, у нас все готово для рассмотрения основной леммы.
Формулировка леммы о перестановке интеграла и супремума
Пусть рассматривается задача быстродействия (\ref(main_sys)). Тогда справедливо тождество: \[\sup\limits_{u(\cdot)}\left[ \int\limits^{t_1}_{t_0} \langle s(\tau),\,u(\tau) \rangle \,d\tau\right] = \int\limits^{t_1}_{t_0}\left[\sup\limits_{u \in \mathcal{P}} \langle s(\tau),\,u \rangle\right] d\tau,\] где $$s(\tau) = B^T(\tau)X^T(t_1,\tau)l$$.
Доказательство леммы
\begin{proof} Так как '"`UNIQ-MathJax14-QINU`"'~--- непрерывная функция, то '"`UNIQ-MathJax15-QINU`"' непрерывно по '"`UNIQ-MathJax16-QINU`"', и, следовательно, интегрируема. Рассмотрим '"`UNIQ-MathJax17-QINU`"' \end{proof}