Топологически орбитально эквивалентные системы: различия между версиями
Kirill24 (обсуждение | вклад) |
Kirill24 (обсуждение | вклад) |
||
Строка 8: | Строка 8: | ||
где $$g(u) = (g_1(u), g_2(u), \dots, g_n(u)), f(v) = (f_1(v), f_2(v), \dots, f_n(v)).$$ | где $$g(u) = (g_1(u), g_2(u), \dots, g_n(u)), f(v) = (f_1(v), f_2(v), \dots, f_n(v)).$$ | ||
− | Пусть функции $f(\cdot)$ и $g(\cdot)$ связаны соотношением | + | Пусть функции $$f(\cdot)$$ и $$g(\cdot)$$ связаны соотношением |
\begin{equation} \label{func_dep} | \begin{equation} \label{func_dep} | ||
g(u) = \mu(u)f(u), \forall u \in U \subset \mathbb{R}^n, | g(u) = \mu(u)f(u), \forall u \in U \subset \mathbb{R}^n, | ||
\end{equation} | \end{equation} | ||
− | где $\mu(\cdot)$ ~---~ гладкая скалярная знакоопределенная (т.е. положительная для всех $u \in U$ или отрицательная для всех $u \in U$) функция. | + | где $$\mu(\cdot)$$ ~---~ гладкая скалярная знакоопределенная (т.е. положительная для всех $$u \in U$$ или отрицательная для всех $$u \in U$$) функция. |
Системы \eqref{sys1} и \eqref{sys2}, правые части которых связаны соотношением \eqref{func_dep}, называются '''орбитально эквивалентными'''. | Системы \eqref{sys1} и \eqref{sys2}, правые части которых связаны соотношением \eqref{func_dep}, называются '''орбитально эквивалентными'''. | ||
Строка 20: | Строка 20: | ||
=Свойства орбитально эквивалентных систем= | =Свойства орбитально эквивалентных систем= | ||
'''Утверждение.''' | '''Утверждение.''' | ||
− | Орбитально эквивалентные системы в области $U$ являются топологически эквивалентными в этой области. | + | Орбитально эквивалентные системы в области $$U$$ являются топологически эквивалентными в этой области. |
'''Доказательство''' | '''Доказательство''' | ||
Строка 29: | Строка 29: | ||
\end{align*} | \end{align*} | ||
− | Поскольку $\mu(u) \not= 0, \forall u \in U,$ то корни уравнений совпадают. | + | Поскольку $$\mu(u) \not= 0, \forall u \in U,$$ то корни уравнений совпадают. |
− | Далее для простоты будем считать, что $n = 2$, т.к. доказательство легко обобщается на случай произвольного $n$. | + | Далее для простоты будем считать, что $$n = 2$$, т.к. доказательство легко обобщается на случай произвольного $$n$$. |
Пусть все положения равновесия систем \eqref{sys1} и \eqref{sys2} являются гиперболическими, т.е. определители [https://sawiki.cs.msu.ru/index.php/Матрица_Якоби._Лемма_о_выпрямлении_векторного_поля матриц Якоби] этих систем отличны от нуля в особых точках. Найдем матрицу Якоби системы \eqref{sys1}. | Пусть все положения равновесия систем \eqref{sys1} и \eqref{sys2} являются гиперболическими, т.е. определители [https://sawiki.cs.msu.ru/index.php/Матрица_Якоби._Лемма_о_выпрямлении_векторного_поля матриц Якоби] этих систем отличны от нуля в особых точках. Найдем матрицу Якоби системы \eqref{sys1}. | ||
Строка 49: | Строка 49: | ||
$$ | $$ | ||
− | Если точка $(u_1, u_2)$ является особой, то $f_1(u_1, u_2) = f_2(u_1, u_2) = 0.$ Тогда матрица Якоби системы \eqref{sys1} равна | + | Если точка $$(u_1, u_2)$$ является особой, то $$f_1(u_1, u_2) = f_2(u_1, u_2) = 0.$$ Тогда матрица Якоби системы \eqref{sys1} равна |
$$ | $$ | ||
J_1(u_1, u_2) = | J_1(u_1, u_2) = | ||
Строка 79: | Строка 79: | ||
\end{split} | \end{split} | ||
\end{equation*} | \end{equation*} | ||
− | где $J_2(u_1, u_2)$ ~---~ матрица Якоби системы \eqref{sys2}. Поскольку $\mu(u_1, u_2) \not= 0$, то определители матриц Якоби систем \eqref{sys1} и \eqref{sys2} имеют одинаковый знак. Поэтому особые точки имеют одинаковый тип устойчивости. Значит, системы \eqref{sys1} и \eqref{sys2} топологически эквивалентны. | + | где $$J_2(u_1, u_2)$$ ~---~ матрица Якоби системы \eqref{sys2}. Поскольку $$\mu(u_1, u_2) \not= 0$$, то определители матриц Якоби систем \eqref{sys1} и \eqref{sys2} имеют одинаковый знак. Поэтому особые точки имеют одинаковый тип устойчивости. Значит, системы \eqref{sys1} и \eqref{sys2} топологически эквивалентны. |
Таким образом, орбитально эквивалентные системы являются топологически эквивалентными, поэтому их называют '''топологически орбитально''' эквивалентными. | Таким образом, орбитально эквивалентные системы являются топологически эквивалентными, поэтому их называют '''топологически орбитально''' эквивалентными. | ||
− | Можно понимать орбитальную эквивалентность как нелинейную деформацию времени. Так, если в системе \eqref{sys1} сделать замену $t = \mu(u)\tau, \operatorname{d}t = \mu(u)\operatorname{d}\tau,$ то получим систему \eqref{sys2}. Таким образом траектории орбитально эквивалентных систем отличаются лишь скоростью прохождения по ним. | + | Можно понимать орбитальную эквивалентность как нелинейную деформацию времени. Так, если в системе \eqref{sys1} сделать замену $$t = \mu(u)\tau, \operatorname{d}t = \mu(u)\operatorname{d}\tau,$$ то получим систему \eqref{sys2}. Таким образом траектории орбитально эквивалентных систем отличаются лишь скоростью прохождения по ним. |
'''Утверждение.''' | '''Утверждение.''' | ||
− | Если в области $U$ выполнено неравенство $$\dfrac{\partial (\mu f_1)}{\partial x_1} +\dfrac{\partial (\mu f_2)}{\partial x_2} > 0 (\text{или} < 0),$$ | + | Если в области $$U$$ выполнено неравенство $$\dfrac{\partial (\mu f_1)}{\partial x_1} +\dfrac{\partial (\mu f_2)}{\partial x_2} > 0 (\text{или} < 0),$$ |
то в ней нет замкнутых траекторий системы \eqref{sys1}. | то в ней нет замкнутых траекторий системы \eqref{sys1}. | ||
'''Доказательство''' | '''Доказательство''' | ||
− | Заметим, что указанное неравенство есть ни что иное, как дивергенция правой части системы \eqref{sys1} $\implies$ по теореме Дюлака-Бендиксона в области $U$ нет замкнутых траекторий системы. | + | Заметим, что указанное неравенство есть ни что иное, как дивергенция правой части системы \eqref{sys1} $$\implies$$ по теореме Дюлака-Бендиксона в области $$U$$ нет замкнутых траекторий системы. |
Строка 106: | Строка 106: | ||
\end{cases} | \end{cases} | ||
\end{align*} | \end{align*} | ||
− | Эти системы топологически орбитально эквивалентны в области $U = \{(x_1,x_2)\mid x_1^2 + x_2^2 < 1\}.$ Также они топологически орбитально эквивалентны в области $R^2 \backslash \overline{U} = \{(x_1,x_2)\mid x_1^2 + x_2^2 > 1\}.$ | + | Эти системы топологически орбитально эквивалентны в области $$U = \{(x_1,x_2)\mid x_1^2 + x_2^2 < 1\}.$$ Также они топологически орбитально эквивалентны в области $$R^2 \backslash \overline{U} = \{(x_1,x_2)\mid x_1^2 + x_2^2 > 1\}.$$ |
+ | |||
+ | == Список литературы == | ||
+ | # Абрамова В.В. "Лекции по динамическим системам и биоматематике", 2023. | ||
+ | # Братусь А.С., Новожилов А.С., Платонов А.П. "Динамические системы и модели биологии", 2011. |
Версия 22:49, 6 декабря 2024
Рассмотрим две динамические системы с непрерывным временем \begin{align}\label{sys1} \dot{u} = g(u), \quad u \in \mathbb{R}^n,\\ \label{sys2} \dot{v} = f(v), \quad v \in \mathbb{R}^n, \end{align} где $$g(u) = (g_1(u), g_2(u), \dots, g_n(u)), f(v) = (f_1(v), f_2(v), \dots, f_n(v)).$$
Пусть функции $$f(\cdot)$$ и $$g(\cdot)$$ связаны соотношением \begin{equation} \label{func_dep} g(u) = \mu(u)f(u), \forall u \in U \subset \mathbb{R}^n, \end{equation} где $$\mu(\cdot)$$ ~---~ гладкая скалярная знакоопределенная (т.е. положительная для всех $$u \in U$$ или отрицательная для всех $$u \in U$$) функция.
Системы \eqref{sys1} и \eqref{sys2}, правые части которых связаны соотношением \eqref{func_dep}, называются орбитально эквивалентными.
Свойства орбитально эквивалентных систем
Утверждение. Орбитально эквивалентные системы в области $$U$$ являются топологически эквивалентными в этой области.
Доказательство Особые точки систем \eqref{sys1} и \eqref{sys2} являются корнями уравнений: \begin{align*} f(u) = 0,\\ g(u) = 0. \end{align*}
Поскольку $$\mu(u) \not= 0, \forall u \in U,$$ то корни уравнений совпадают.
Далее для простоты будем считать, что $$n = 2$$, т.к. доказательство легко обобщается на случай произвольного $$n$$.
Пусть все положения равновесия систем \eqref{sys1} и \eqref{sys2} являются гиперболическими, т.е. определители матриц Якоби этих систем отличны от нуля в особых точках. Найдем матрицу Якоби системы \eqref{sys1}. $$ J_1(u_1, u_2) = \left.\left[\dfrac{\partial g}{\partial u}\right]\right|_{(u_1, u_2)} = \left.\left[\dfrac{\partial (\mu f)}{\partial u}\right]\right|_{(u_1, u_2)} = \left.\begin{pmatrix} \dfrac{\partial \mu}{\partial u_1}f_1 + \dfrac{\partial f_1}{\partial u_1}\mu & \dfrac{\partial \mu}{\partial u_2}f_1 + \dfrac{\partial f_1}{\partial u_2}\mu\\ \dfrac{\partial \mu}{\partial u_1}f_2 + \dfrac{\partial f_2}{\partial u_1}\mu & \dfrac{\partial \mu}{\partial u_2}f_2 + \dfrac{\partial f_2}{\partial u_2}\mu \end{pmatrix}\right|_{(u_1,u_2)} $$
Если точка $$(u_1, u_2)$$ является особой, то $$f_1(u_1, u_2) = f_2(u_1, u_2) = 0.$$ Тогда матрица Якоби системы \eqref{sys1} равна $$ J_1(u_1, u_2) = \left.\begin{pmatrix} \dfrac{\partial f_1}{\partial u_1}\mu & \dfrac{\partial f_1}{\partial u_2}\mu\\ \dfrac{\partial f_2}{\partial u_1}\mu & \dfrac{\partial f_2}{\partial u_2}\mu \end{pmatrix}\right|_{(u_1,u_2)} $$ Её определитель равен \begin{equation*} \begin{split} \operatorname{det}(J_1(u_1, u_2)) &= \operatorname{det}\left.\begin{pmatrix} \dfrac{\partial f_1}{\partial u_1}\mu & \dfrac{\partial f_1}{\partial u_2}\mu\\ \dfrac{\partial f_2}{\partial u_1}\mu & \dfrac{\partial f_2}{\partial u_2}\mu \end{pmatrix}\right|_{(u_1,u_2)} = (\mu(u_1, u_2))^2 \operatorname{det}\left.\begin{pmatrix} \dfrac{\partial f_1}{\partial u_1} & \dfrac{\partial f_1}{\partial u_2}\\ \dfrac{\partial f_2}{\partial u_1} & \dfrac{\partial f_2}{\partial u_2} \end{pmatrix}\right|_{(u_1,u_2)} =\\ &= (\mu(u_1, u_2))^2 \operatorname{det}(J_2(u_1,u_2)), \end{split} \end{equation*} где $$J_2(u_1, u_2)$$ ~---~ матрица Якоби системы \eqref{sys2}. Поскольку $$\mu(u_1, u_2) \not= 0$$, то определители матриц Якоби систем \eqref{sys1} и \eqref{sys2} имеют одинаковый знак. Поэтому особые точки имеют одинаковый тип устойчивости. Значит, системы \eqref{sys1} и \eqref{sys2} топологически эквивалентны.
Таким образом, орбитально эквивалентные системы являются топологически эквивалентными, поэтому их называют топологически орбитально эквивалентными.
Можно понимать орбитальную эквивалентность как нелинейную деформацию времени. Так, если в системе \eqref{sys1} сделать замену $$t = \mu(u)\tau, \operatorname{d}t = \mu(u)\operatorname{d}\tau,$$ то получим систему \eqref{sys2}. Таким образом траектории орбитально эквивалентных систем отличаются лишь скоростью прохождения по ним.
Утверждение. Если в области $$U$$ выполнено неравенство $$\dfrac{\partial (\mu f_1)}{\partial x_1} +\dfrac{\partial (\mu f_2)}{\partial x_2} > 0 (\text{или} < 0),$$ то в ней нет замкнутых траекторий системы \eqref{sys1}.
Доказательство Заметим, что указанное неравенство есть ни что иное, как дивергенция правой части системы \eqref{sys1} $$\implies$$ по теореме Дюлака-Бендиксона в области $$U$$ нет замкнутых траекторий системы.
Примеры
Рассмотрим две системы: \begin{align*} \begin{cases} \dot{x}_1 &= x_2,\\ \dot{x}_2 &= -x_1 \end{cases}\\ \begin{cases} \dot{x}_1 &= x_2(1-(x_1^2+x_2^2)),\\ \dot{x}_2 &= -x_1(1-(x_1^2+x_2^2)) \end{cases} \end{align*} Эти системы топологически орбитально эквивалентны в области $$U = \{(x_1,x_2)\mid x_1^2 + x_2^2 < 1\}.$$ Также они топологически орбитально эквивалентны в области $$R^2 \backslash \overline{U} = \{(x_1,x_2)\mid x_1^2 + x_2^2 > 1\}.$$
Список литературы
- Абрамова В.В. "Лекции по динамическим системам и биоматематике", 2023.
- Братусь А.С., Новожилов А.С., Платонов А.П. "Динамические системы и модели биологии", 2011.