Динамическая система

Материал из sawiki
Перейти к навигации Перейти к поиску

Динамическая система - это абстрактная математическая модель, которая состоит из множества элементов, связанных между собой функциональной зависимостью между временем и положением в фазовом пространстве каждого элемента системы. Такая модель позволяет изучать и описывать эволюцию системы во времени, что находит широкое применение в различных областях науки и техники.

Определение динамической системы является математической формализацией общей научной концепции детерминированного процесса. Процесс называется детерминированным, если весь его будущий ход и все его прошлое однозначно определяются состоянием в настоящее время.

Введение

Динамическая система может быть представлена как система, которая имеет состояние. Подход, основанный на состоянии, позволяет описать динамику процесса, который является переходом системы из одного состояния в другое. Фазовое пространство системы представляет собой набор всех допустимых состояний динамической системы. Таким образом, динамическая система характеризуется своим начальным состоянием и законом, определяющим переход системы из начального состояния в другое.

Основная задача теории динамических систем - это исследование поведения систем, определяемых дифференциальными уравнениями. Это включает разбиение фазового пространства на траектории и изучение предельного поведения этих траекторий, таких как поиск и классификация положений равновесия, выделение притягивающих (аттракторы) и отталкивающих (репеллеры) множеств. Важнейшими понятиями теории динамических систем являются устойчивость состояний равновесия (способность системы при малых изменениях начальных условий оставаться около положения равновесия или на заданном множестве) и грубость (сохранение свойств при малых изменениях самой математической модели). Основные методы изучения динамических систем включают численное и аналитическое решение дифференциальных уравнений, а также геометрические методы анализа фазовых портретов.

Примеры

Пример 1.

$$\quad$$ Рассмотрим изолированную популяцию, находящуюся в неизменных условиях, не подвергающуюся внешнему воздействию, каждая особь которой имеет одинаковый доступ к ресурсам, а так же, одинаковую вероятность встретить (и таким образом конкурировать) другую особь популяции.

$$\quad$$ Так как численность не может быть отрицательной, то пространство состояний в данном примере $$X = \mathbb{R}^+$$, где $$\mathbb{R}^+ = \{N ∈ \mathbb{R}: N > 0\}$$. Здесь следует отметить, что если рассматривать численность как функцию времени, то очевидно, что эта функция целочисленна, т.е. $$N(t) ∈ {N ∈ Z: N > 0}$$. Величина $$\dfrac{N(t + ∆t) − N(t)}{∆t}$$ описывает среднюю скорость роста в интервале времени $$(t, t+∆t]$$. Если численность популяции велика, то скачки, вызванные рождением и смертью отдельных индивидуумов, выглядят пренебрежимо малыми на графике функции $$N(t)$$. Поэтому мы постулируем существование производной по времени $$\dfrac{dN(t)}{dt} = \lim\limits_{∆t→0}\dfrac{N(t + ∆t) − N(t)}{∆t} ≡ \dot{N}$$.

$$\quad$$Величина $$\dfrac{\dot{N}}{N}$$ показывает средний вклад одного индивидуума в популяционный рост.

Пример 2 (Экологическая система).

$$\quad$$ Состояние экологического сообщества в пределах определенной области $$Ω$$ может быть описано вектором с неотрицательными компонентами $$N = (N_1, N_2, . . . , N_n) ∈ \mathbb{R}^n_+$$, где $$N_i$$ — численность или плотность $$i$$-го вида. Здесь, очевидно, $$\mathbb{R}^n_+ = \{N ∈ \mathbb{R}^n: N > 0\}$$, где запись $$N > 0$$ для вектора $$N$$ обозначает, что $$N_i > 0$$ для всех $$i$$.

Пример 3.

$$\quad$$ В случае примера 1, можно добавить в рассмотрение признаки особей. Предположим, что распределение по признаку непрерывно (скажем, если признак — вес индивидуума или его возраст). Если обозначить пространство признаков как $$Γ$$, то состояние системы описывается функцией $$N(γ, t), γ ∈ Γ$$.

Эволюционный оператор

Эволюция динамической системы означает изменение состояния системы со временем $$t ∈ T$$, где $$T$$ — упорядоченное множество.

$$\quad$$В математической биологии применяются два типа динамических систем: непрерывные с временем $$T = \mathbb{R}$$ и дискретные с целочисленным временем $$T = Z$$.

$$\quad$$Основным компонентом любой динамической системы является закон эволюции, который определяет состояние системы $$x_t$$ в момент времени $$t$$, при условии, что начальное состояние $$x_0$$ известно.

$$\quad$$Самый общий способ описать закон эволюции — задать отображение: \[ϕ^t: X → X,\] которое переводит начальное состояние в состояние системы в момент $$t$$: $$x_t = ϕ^t x_0$$.

$$\quad$$Отображение $$ϕ^t$$ часто называют эволюционным оператором динамической системы. Эволюционный оператор имеет два естественных свойства, которые отражают детерминированный характер поведения динамической системы: \begin{equation} \label{eq:0} ϕ^0 x = x,\ \forall x \in X,\\ \end{equation} \begin{equation} \label{eq:1} ϕ^{t+s} = ϕ^t◦ϕ^s\ \text{или}\ ϕ^{t+s}x = ϕ^t(ϕ^sx),\ \forall x \in X. \end{equation} $$\quad$$Другими словами, свойство \eqref{eq:0} означает, что динамическая система не изменяет своего состояния «спонтанно», а свойство \eqref{eq:1},что результат эволюции системы в течение $$t + s$$ единиц времени тот же самый, как если бы сначала зафиксировать изменение системы за $$s$$ единиц времени и затем получить состояние измененной системы еще через $$t$$ единиц времени.

Определение динамической системы

$$\quad$$Динамической системой называется пара $${X,\ ϕ^t}$$, где $$X$$ — пространство состояний, $$ϕ^t$$ — однопараметрическое семейство эволюционных операторов, удовлетворяющее свойствам \eqref{eq:0} и \eqref{eq:1}.

$$\quad$$Самый простой способ задать динамическую систему — указать эволюционный оператор в явном виде. Например, можно положить $$ϕ^1 = f(N) = 2N$$. То есть, за каждую единицу времени численность популяции увеличивается в 2 раза.

$$\quad$$Другой общий способ задания динамической системы — описать закон эволюции с помощью дифференциальных уравнений.

$$\quad$$Предположим, что пространство состояний динамической системы есть подмножество $$X = U ⊆ \mathbb{R}^n$$ с координатами $$u = (u_1, u_2, . . . , u_n)$$. Закон эволюции задается неявно, в терминах скоростей изменения координат: \[\dot{u} = f(u),\ u ∈ U ⊆ \mathbb{R}^n,\ f : U → \mathbb{R}^n,\] или, в покоординатной форме записи:

\begin{equation*} \begin{cases} \dot{u}_1 = f_1(u_1, u_2, . . . , u_n),\\ \dot{u}_2 = f_2(u_1, u_2, . . . , u_n),\\ ...\\ \dot{u}_n = f_n(u_1, u_2, . . . , u_n). \end{cases} \end{equation*}

Вопросы теории динамических систем

$$\quad$$Имея какое-то задание динамической системы, далеко не всегда можно найти и описать её траектории в явном виде. Поэтому обычно рассматриваются более простые (но не менее содержательные) вопросы об общем поведении системы. Например:

  1. Есть ли у системы замкнутые фазовые кривые, то есть может ли она вернуться в начальное состояние в ходе эволюции?
  2. Как устроен аттрактор системы, то есть множество в пространстве состояний, к которому стремится «большинство» траекторий?
  3. Как ведут себя траектории, выпущенные из близких точек — остаются ли они близкими или уходят со временем на значительное расстояние?
  4. Что можно сказать о поведении «типичной» динамической системы из некоторого класса?
  5. Что можно сказать о поведении динамических систем, «близких» к данной?

См. также

Список литературы

  1. Братусь А.С., Новожилов А.С., Платонов А.П. Динамические системы и модели биологии 2011.
  2. Абрамова В.В. Лекции по курсу "Динамические системы и биоматематика", 2023.