Компактность и предкомпактность: различия между версиями

Материал из sawiki
Перейти к навигации Перейти к поиску
Строка 46: Строка 46:
  
 
2. $$X$$ равностепенно непрерывно.
 
2. $$X$$ равностепенно непрерывно.
 +
 +
'''Доказательство'''.
  
  
Строка 53: Строка 55:
  
 
2. $$\forall\varepsilon>0~\exists\delta=\delta(\varepsilon)>0:~\forall h>0:~h>\delta,~\forall f(\cdot)\in X\Rightarrow \int_a^{b-h}|f(x+h)-f(x)|^pdx<\varepsilon^p$$.
 
2. $$\forall\varepsilon>0~\exists\delta=\delta(\varepsilon)>0:~\forall h>0:~h>\delta,~\forall f(\cdot)\in X\Rightarrow \int_a^{b-h}|f(x+h)-f(x)|^pdx<\varepsilon^p$$.
 +
 +
'''Доказательство'''.

Версия 13:49, 28 октября 2023

Пусть $$(X, \rho)$$ $$-$$ метрическое пространство.

Определение

Множество $$A \subset X$$ называется компактным, если из любой последовательности $$\{x_n\}_{n = 1}^{\infty}$$ его элементов можно выделить сходящуюся подпоследовательность $$\{x_{n_k}\}_{k = 1}^{\infty}$$ к некоторому элементу $$x^{*} \in A$$.

Множество $$A$$ называется предкомпактным, если из любой последовательности $$\{x_n\}_{n = 1}^{\infty} \subset A \Rightarrow \exists \{x_{n_k}\}_{k = 1}^{\infty}$$ $$-$$ фундаментальная подпоследовательность.

Примеры

$$\underline{Пример \; 1.}$$ Пусть $$X = [0, 1].$$ Тогда $$X$$ $$-$$ компакт в силу теоремы Больцано.

$$\underline{Пример \; 2.}$$ Пусть $$X = E_1 - $$ одномерное евклидово пространство(числовая прямая). $$X$$ $$-$$ некомпактно. Действительно, его подмножество $$M = \{1, 2, 3, \ldots, n, \ldots\}$$ не содержит никакой сходящейся последовательности.

Вспомогательные определения и утверждения

  • Определение. Множество $$A$$ называется вполне ограниченным, если $$\forall \varepsilon > 0 \; \exists$$ конечная $$\boldsymbol{\varepsilon}$$-сеть для $$A:$$ т.е. $$\exists \{x_n\}_{n = 1}^{N}, x_n \in X \text{ и } A \subseteq \bigcup_{n = 1}^{N}B_{\varepsilon}(x_n)$$.
  • Утверждение. Если $$A$$ $$-$$ компакт, то оно замкнуто и ограничено.

Доказательство. Пусть произвольная последовательность $$\{x_n\} \in A$$ сходится к $$x_0 \in X$$. Так как множество $$A$$ $$-$$ компакт, то из последовательности $$\{x_n\}$$ можно выделить подпоследовательность $$\{x_{n_k}\} \rightarrow x \in A$$. Но любая подпоследовательность сходящейся последовательности сходится к пределу последовательности, то есть $$x = x_0$$. Ограниченность очевидна.$$\blacksquare$$

Теорема Хаусдорфа (критерий предкомпактности).

Теорема 1. $$M$$ предкомпактно $$\Leftrightarrow$$ оно вполне ограничено.

Доказательство. $$\Rightarrow$$ Пусть $$M$$ предкомпактно. Зафиксируем $$\forall \varepsilon > 0$$. Выберем произвольный $$x_1 \in M$$ и рассмотрим шар $$B(x_1, \varepsilon)$$. Если $$M \subset B(x_1, \varepsilon)$$, то все доказано, иначе выберем $$x_2 \in M \setminus B(x_1, \varepsilon)$$. Заметим, что $$d(x_1, x_2) \geqslant \varepsilon$$. Если $$M \subset B(x_1, \varepsilon)\bigcup B(x_2, \varepsilon)$$, то все доказано, иначе выберем $$x_3 \in M \setminus (B(x_1, \varepsilon)\bigcup B(x_2, \varepsilon))$$, и т.д. Если этот процесс не обрывается, то получим последовательность $$\{x_n\}, \; d(x_k, x_n) \geqslant \varepsilon \text{ при } k \neq n$$, из которой невозможно выбрать фундаментальную подпоследовательность.

$$\Leftarrow$$ Пусть $$M$$ вполне ограничено. Выберем произвольную последовательность $$\{x_n\}$$. Положим $$\varepsilon_m = 2^{-m}$$. Некоторый конечный набор шаров радиуса $$\varepsilon_1$$ накрывает $$M$$, поэтому по крайней мере один из них содержит бесконечное число членов $$\{x_n\}$$ (подпоследовательность). Накроем этот шар конечным набором шаров радиуса $$\varepsilon_2$$; один из них опять содержит бесконечное число членов подпоследовательности, и т.д. Выбрав на каждом этапе по элементу, построим подпоследовательность, которая будет фундаментальной.$$\blacksquare$$

Лемма Гейне-Бореля (критерий компактности).

Лемма 1. $$A$$ компактно $$\Leftrightarrow$$ из любого его открытого покрытия можно выделить конечное подпокрытие.

Доказательство. $$\Leftarrow$$ Рассмотрим произвольную последовательность $$\{x_n\}$$. Пусть $$X_n = \{x_n, x_{n + 1}, \ldots\}$$.

  1. Покажем, что $$\bigcap_{n = 1}^{\infty}\overline{X_n} \neq \varnothing$$. Действительно, пусть это не так, тогда $$M = M \setminus \bigcap_{n = 1}^{\infty}\overline{X_n} = \bigcup_{n = 1}^{\infty}\overline{X_n}\big{(}M \setminus \overline{X_n}\big{)}$$, т.е. открытые множества $$M \setminus \overline{X_n}$$ образуют покрытие пространства $$M$$. По условию $$\exists N: M = \bigcup_{n = 1}^{N}\big{(}M \setminus \overline{X_n}\big{)}$$, следовательно, $$\bigcap_{n = 1}^{N}\overline{X_n} = \varnothing$$, что противоречит тому, что $$x_N \in \bigcap_{n = 1}^{N}X_n$$.
  2. Пусть $$x \in \bigcap_{n = 1}^{\infty}\overline{X_n}$$ (конечно, $$x \in M$$). Возможны следующие случаи:
    1. $$x \in X_{n_1}, X_{n_2}, \ldots$$ (бесконечная последовательность): в качестве фундаментальной можно взять стационарную подпоследовательность $$x, x, \ldots$$;
    2. $$x \in X_{n_1}, X_{n_2}, \ldots, X_{n_m}: x \notin X_{n_m + 1}, X_{n_m + 2}, \ldots:$$ в этом случае $$x$$ $$-$$ предельная точка для всех $$X_n$$, начиная с номера $$n_m + 1$$, а следовательно, в любой окрестности точки $$x$$ найдется точка из $$X_n$$, что и позволяет выбрать $$\{x_n\}$$ сходящуюся подпоследовательность.

$$\Rightarrow$$ От противного. Пусть $$\{G_{\alpha}\} - $$ открытое покрытие $$M$$, из которого нельзя выделить конечное подпокрытие. Так как $$M$$ компактно, то по теореме Хаусдорфа оно вполне ограничено. Пусть $$\varepsilon_m = 2^{-m}$$. Накроем $$M$$ конечным набором шаров радиуса $$\varepsilon_1$$. По предположению среди них существует шар $$B_1 = B(x_1, \varepsilon_1)$$, из покрытия $$\{G_{\alpha}\}$$ которого нельзя выделить конечное подпокрытие. Накроем $$B_1$$ конечным набором шаров радиуса $$\varepsilon_2$$. Среди них снова найдется шар $$B_2$$, из покрытия $$\{G_{\alpha}\}$$ которого нельзя выделить конечное подпокрытие, и т.д. Видно, что центры шаров $$B_l$$ образую фундаментальную последовательность. В силу компактности $$M$$ эта последовательность сходится; пусть $$y \in M$$ $$-$$ ее предел. Так как $$y$$ содержится в одном из открытых множеств $$\{G_{\alpha}\}$$, то существует шар с центром в $$y$$, содержащийся в $$\{G_{\alpha}\}$$, причем ясно, что все шары $$B_l$$, начиная с некоторого номера, попадают в этот шар $$-$$ противоречие.$$\blacksquare$$

Критерии предкомактности в $$C[a,b],~L_p[a,b],~l_p$$.

Определение 1 (равностепенная непрерывность в $$C[a,b]$$). Множество $$X\subset C[a,b]$$ называется равностепенно непрерывным, если $$\forall \varepsilon>0~\exists\delta=\delta(\varepsilon)>0:~\forall x_1,x_2\in[a,b]:~|x_1-x_2|<\delta,~\forall f(\cdot)\in X\Rightarrow |f(x_1)-f(x_2)|\leq\varepsilon.$$

Теорема 1 (Арцела-Асколи). Пусть $$X\subset C[a,b]$$. Тогда $$X$$ - предкомпактно $$\Leftrightarrow$$

1. $$X$$ ограничено по метрике $$C[a,b]$$.

2. $$X$$ равностепенно непрерывно.

Доказательство.


Теорема 2. Пусть $$p\geq1$$, конечно, $$X\subset L_p[a,b]$$. Тогда $$X$$ предкомпактно $$\Leftrightarrow$$

1. $$X$$ - ограничено.

2. $$\forall\varepsilon>0~\exists\delta=\delta(\varepsilon)>0:~\forall h>0:~h>\delta,~\forall f(\cdot)\in X\Rightarrow \int_a^{b-h}|f(x+h)-f(x)|^pdx<\varepsilon^p$$.

Доказательство.