Лемма о перестановке интеграла и супремума: различия между версиями

Материал из sawiki
Перейти к навигации Перейти к поиску
Строка 51: Строка 51:
 
== Формулировка леммы о перестановке интеграла и супремума ==
 
== Формулировка леммы о перестановке интеграла и супремума ==
 
Пусть рассматривается задача быстродействия (\ref(main_sys)). Тогда справедливо тождество:
 
Пусть рассматривается задача быстродействия (\ref(main_sys)). Тогда справедливо тождество:
\[\sup\limits_{u(\cdot)}\left[ \int\limits^{t_1}_{t_0} \langle s(\tau),\,u(\tau) \rangle d\tau\right] = \int\limits^{t_1}_{t_0}\left[\sup\limits_{u \in \mathcal{P}} \langle s(\tau),\,u \rangle\right] d\tau\]  
+
\[\sup\limits_{u(\cdot)}\left[ \int\limits^{t_1}_{t_0} \langle s(\tau),\,u(\tau) \rangle \,d\tau\right] = \int\limits^{t_1}_{t_0}\left[\sup\limits_{u \in \mathcal{P}} \langle s(\tau),\,u \rangle\right] d\tau,\]  
 +
где $$s(\tau) = B^T(\tau)X^T(t_1,\tau)l$$.
  
 +
== Доказательство леммы ==
 +
\begin{proof}
 +
    Так как $$ s(\tau) $$~--- непрерывная функция, то $$ \rho(s(\tau)|\mathcal{P}(t)) = \sup\limits_{u \in \mathcal{P}(\tau)} \langle s(\tau),\,u \rangle $$ непрерывно по $$ \tau $$, и, следовательно, интегрируема.
 +
    Рассмотрим $$ \text{Argmax}\limits_{u(\cdot) \in \mathcal{P}(\tau)} $$
 +
\end{proof}
  
  
  
 
 
[https://ru.wikipedia.org/wiki/%D0%A4%D1%83%D1%80%D1%8C%D0%B5,_%D0%96%D0%B0%D0%BD-%D0%91%D0%B0%D1%82%D0%B8%D1%81%D1%82_%D0%96%D0%BE%D0%B7%D0%B5%D1%84 Пример ссылки]
 
 
[[File:Fourier series and transform.gif|frame|right| Пример гиф/картинки]]
 
 
Переменная $$x$$
 
 
'''Жирный шрифт'''
 
 
* таки перечисление 1,
 
* таки перечисление 2.
 
  
 
[[Категория:ОУ]]
 
[[Категория:ОУ]]

Версия 11:27, 29 ноября 2021

Условия перестановки интеграла и супремума складываются в лемму, которая возникает в задаче быстродействия (т.е. поиска управления, оптимального по времени) и применяется для облегчения расчета опорной функции множества достижимости.

Задача быстродействия

Тип задач оптимального управления, заключающегося в переводе системы из начального фиксированного положения в конечное, также фиксированное, за минимальное время.

Пусть наша система описывается следующими условиями:

\[ \left\{\begin{aligned} & \dot{x} = A(t)x(t) + B(t)u(t)+f(t), \\ & x(t_0) = x^0, \\ & x(t_1) = x^1, \\ & u(\tau) \in \mathcal{P} \in \textit{conv}R^m, \\ & t_1 - t_0 \longrightarrow \text{inf}, \end{aligned}\right. \label{main_sys} \]

где $$ x^0,\,x^1,\,t_0 $$ - фиксированы, $$ A(t),\,B(t),\,f(t) $$ - непрерывны, а $$ \mathcal{P} $$ непрерывно, как многозначное отображение (это требование гарантирует нам непрерывность опорной функции $$ \mathcal{\rho(l|\mathcal{P}(\tau))} $$ по $$ \tau $$ для любого $$ l $$).

Множество достижимости

Введем множество достижимости $$ \mathcal{X}[t_1] $$:

\[ \mathcal{X}[t_1] = \mathcal{X}(t_1,t_0,x^0) = \{x = x(t_1,t_0,x^0\,|\,u(\cdot)), u(\tau) \in \mathcal{P}\}. \]

Обозначение $$ \mathcal{X}[t_1] $$ означает, что в данный момент нам интересна зависимость $$ \mathcal{X} $$ только от переменной $$ t_1 $$, хотя в общем случае значение $$ \mathcal{X} $$ зависит от большего числа переменных.

Введем также трубку достижимости (функцию, отображающую время на соответствующее множество достижимости) как $$ \mathcal{X}[\cdot] $$. Ее графиком будем называть множество:

\[ \mathcal{X}[\cdot] = \{(t,\,x): x\in \mathcal{X}[t]\}. \]

Тогда опорная функция множества достижимости будет рассчитываться по следующей формуле:

\[ \rho(l\,|\,\mathcal{X}[t_1]) = \sup\limits_{u(\cdot)} \left[ \langle l,\,X(t_1,t_0) \rangle + \int\limits^{t_1}_{t_0}\langle B^T(\tau)X^T(t_1,\tau)l,\,u(\tau) \rangle d\tau + \int\limits^{t_1}_{t_0}\langle l,\,X(t_1,\tau)f(\tau) \rangle d\tau \right] = \] \[ = \langle l,\,X(t_1,t_0) \rangle + \int\limits^{t_1}_{t_0}\langle l,\,X(t_1,\tau)f(\tau) \rangle d\tau + \sup\limits_{u(\cdot)} \left[ \int\limits^{t_1}_{t_0}\langle B^T(\tau)X^T(t_1,\tau)l,\,u(\tau) \rangle d\tau \right]. \]

Теперь, у нас все готово для рассмотрения основной леммы.

Формулировка леммы о перестановке интеграла и супремума

Пусть рассматривается задача быстродействия (\ref(main_sys)). Тогда справедливо тождество: \[\sup\limits_{u(\cdot)}\left[ \int\limits^{t_1}_{t_0} \langle s(\tau),\,u(\tau) \rangle \,d\tau\right] = \int\limits^{t_1}_{t_0}\left[\sup\limits_{u \in \mathcal{P}} \langle s(\tau),\,u \rangle\right] d\tau,\] где $$s(\tau) = B^T(\tau)X^T(t_1,\tau)l$$.

Доказательство леммы

\begin{proof} Так как '"`UNIQ-MathJax14-QINU`"'~--- непрерывная функция, то '"`UNIQ-MathJax15-QINU`"' непрерывно по '"`UNIQ-MathJax16-QINU`"', и, следовательно, интегрируема. Рассмотрим '"`UNIQ-MathJax17-QINU`"' \end{proof}