Управляемость линейной системы: различия между версиями

Материал из sawiki
Перейти к навигации Перейти к поиску
м
м
Строка 3: Строка 3:
 
\dot{x}(t) = A(t)x(t) + B(t)u(t) + f(t), \quad t \in [t_0, t_1],
 
\dot{x}(t) = A(t)x(t) + B(t)u(t) + f(t), \quad t \in [t_0, t_1],
 
\end{equation}
 
\end{equation}
где $$x \in \mathrm{R}^{n}$$ — вектор фазового состояния, $$u \in \mathrm{R}^n$$ — вектор управлений.
+
где $$x \in \mathrm{R}^{n}$$ — вектор фазового состояния, $$u \in \mathrm{R}^m$$ — вектор управлений.
 +
 
 +
Пусть наша система движется из положения $$x(t_0) = x^0$$ и должна попасть в положение $$x(t_1) = x^1$$, при этом мы минимизируем следующий функционал:
 +
 
 +
\[
 +
J[u(\cdot)] = \lVert u(\cdot) \rVert = \left( \int\limits_{t_0}^{t_1} \lVert u(t) \rVert^2 dt \right)^\frac{1}{2} \to \min.
 +
\]
 +
 
 +
== Определение ==
 +
 
 +
Система \eqref{syst} называется '''полностью (или вполне) управляемой''' на $$[t_0, t_1],\ t_0 < t_1$$, если для любых $$x^0, x^1 \in \mathrm{R}^n$$ существует такое управление $$u(\cdot)$$, что $$x(t_1, t_0, x^0 \colon u(\cdot)) = x^1$$ или $$x(t_0, t_1, x^1 \colon u(\cdot)) = x^0$$.
 +
 
 +
То есть под действием этого управления траектория, выпущенная в момент времени $$t_0$$ из точки $$x^0$$, в момент времени $$t_1$$ будет в состоянии $$x^1$$ (или же наоборот, если мы пускаем траектории из конечного состояния в обратном времени).
 +
 
 +
== Задача моментов ==
 +
 
 +
Найдём условия на $$u(\cdot)$$, чтобы $$x(t_0) = x^0,\ x(t_1) = x^1$$. Для этого выпишем [[Формула Коши|формулу Коши]]:
 +
 
 +
\[
 +
x^1 = X(t_1, t_0) x^0 + \int\limits_{t_0}^{t_1} X(t_1, t) \left( B(t) u(t) + f(t) \right) dt.
 +
\]
 +
 
 +
Перенесём все слагаемые, содержащие $$u(t)$$ в одну сторону.
 +
 
 +
\[
 +
\int\limits_{t_0}^{t_1} X(t_1, t) B(t) u(t) dt = x^1 - X(t_1, t_0) x^0 - \int\limits_{t_0}^{t_1} X(t_1, t) f(t) dt.
 +
\]
 +
 
 +
Обозначим за $$c \in \mathrm{R}^n$$ правую часть этого равенства, а $$H(t_1, t) = X(t_1, t) B(t)$$. Получим '''задачу моментов''':
 +
 
 +
\begin{equation}\label{zm}
 +
\int\limits_{t_0}^{t_1} H(t_1, t) u(t) dt = c.
 +
\end{equation}
 +
 
 +
== Критерий полной управляемости ==
 +
 
 +
Система \eqref{syst} - полностью управляема тогда и только тогда, когда $$\forall l \neq \theta$$ выполняется $$H^T(t_1, t) l \neq 0$$.
 +
 
 +
'''Доказательство'''.
 +
''Необходимость''. Предположим противное: пусть существует $$l \neq \theta$$ такое, что $$H^T(t_1, t) l \equiv 0$$. Транспонируем это равенство: $$l^T H(t_1, t) \equiv 0$$.
 +
Так как система управляема, то выполняется задача моментов \eqref{zm}, то есть для любого $$c \in \mathrm{R}^n$$ найдётся $$u(\cdot)$$ такое, что $$\int\limits_{t_0}^{t_1} H(t_1, t) u(t) dt = c$$. Домножим

Версия 13:36, 20 декабря 2020

Будем рассматривать систему \begin{equation}\label{syst} \dot{x}(t) = A(t)x(t) + B(t)u(t) + f(t), \quad t \in [t_0, t_1], \end{equation} где $$x \in \mathrm{R}^{n}$$ — вектор фазового состояния, $$u \in \mathrm{R}^m$$ — вектор управлений.

Пусть наша система движется из положения $$x(t_0) = x^0$$ и должна попасть в положение $$x(t_1) = x^1$$, при этом мы минимизируем следующий функционал:

\[ J[u(\cdot)] = \lVert u(\cdot) \rVert = \left( \int\limits_{t_0}^{t_1} \lVert u(t) \rVert^2 dt \right)^\frac{1}{2} \to \min. \]

Определение

Система \eqref{syst} называется полностью (или вполне) управляемой на $$[t_0, t_1],\ t_0 < t_1$$, если для любых $$x^0, x^1 \in \mathrm{R}^n$$ существует такое управление $$u(\cdot)$$, что $$x(t_1, t_0, x^0 \colon u(\cdot)) = x^1$$ или $$x(t_0, t_1, x^1 \colon u(\cdot)) = x^0$$.

То есть под действием этого управления траектория, выпущенная в момент времени $$t_0$$ из точки $$x^0$$, в момент времени $$t_1$$ будет в состоянии $$x^1$$ (или же наоборот, если мы пускаем траектории из конечного состояния в обратном времени).

Задача моментов

Найдём условия на $$u(\cdot)$$, чтобы $$x(t_0) = x^0,\ x(t_1) = x^1$$. Для этого выпишем формулу Коши:

\[ x^1 = X(t_1, t_0) x^0 + \int\limits_{t_0}^{t_1} X(t_1, t) \left( B(t) u(t) + f(t) \right) dt. \]

Перенесём все слагаемые, содержащие $$u(t)$$ в одну сторону.

\[ \int\limits_{t_0}^{t_1} X(t_1, t) B(t) u(t) dt = x^1 - X(t_1, t_0) x^0 - \int\limits_{t_0}^{t_1} X(t_1, t) f(t) dt. \]

Обозначим за $$c \in \mathrm{R}^n$$ правую часть этого равенства, а $$H(t_1, t) = X(t_1, t) B(t)$$. Получим задачу моментов:

\begin{equation}\label{zm} \int\limits_{t_0}^{t_1} H(t_1, t) u(t) dt = c. \end{equation}

Критерий полной управляемости

Система \eqref{syst} - полностью управляема тогда и только тогда, когда $$\forall l \neq \theta$$ выполняется $$H^T(t_1, t) l \neq 0$$.

Доказательство. Необходимость. Предположим противное: пусть существует $$l \neq \theta$$ такое, что $$H^T(t_1, t) l \equiv 0$$. Транспонируем это равенство: $$l^T H(t_1, t) \equiv 0$$. Так как система управляема, то выполняется задача моментов \eqref{zm}, то есть для любого $$c \in \mathrm{R}^n$$ найдётся $$u(\cdot)$$ такое, что $$\int\limits_{t_0}^{t_1} H(t_1, t) u(t) dt = c$$. Домножим